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Overview
Intro.
Prism design.
Software Sandbox.
Implementation.
Evaluation of few apps.
Conclusion.


How it works ?
Users Participate and contribute install prism runtime on their smart phone and register with the prism infrastructure.
These phones run community sensing apps.

App Server: Submits jobs to PRISM server.

PRISM Server: Accepts jobs and deploy over registered mobile phones.
Deployment: Apps use push or pull based model.
-Push supports fast response, Efficiency , Scalability.
PRISM Client: Registers and supports execution of jobs.








PRISM In a glance
Balances interconnected goals of generality, security and scalability which is a challenge.
Apps as executable binaries and Auto push.
Supports efficiency and flexibility of reusing existing codes or modules.
Push model ensures timely and scalable app ensuring good degree of privacy, controlled sensor info, safety against un-trusted apps.




Client environment
API’s designed to enable the application server to accurately and quickly identify the set of mobile phones that can run the application.
 Accurate identification is enabled by a two-level predicate mechanism while quick deployment is enabled by a choice of deployment modes.
Regulating Access to Sensors- No sensor, Only GPS, All sensors.
An alternative is to place severe resource limits on PRISM applications that access sensitive sensors, instead of blocking such accesses entirely. 
 Diminish privacy risks while providing greater flexibility compared to blocking access to sensors.


More on Prism.
Sandbox environment with elements like 
-Resources metering 
-Taint and controlled access 
-Forced amnesia.
Supports techniques such as system call interposition, virtual machine monitors , or capability-based systems. 
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Evaluation: Citizens Journalist 

PRISM to deliver the sensing task to a certain number of camera-equipped phones in the vicinity of the desired location.
 The location is specified by (lat, long) and includes a coarse radius for deployment and a fine radius for actual execution.
 If matching phones are not readily available, PRISM’s trigger mechanism is used to deploy at the location as and when PRISM clients register/send updates from the desired location.


Results


Party Thermometer: 
Human query app, Deploy based on location and sound sensor.
Avoiding such unnecessary sensing would be essential for efficiency
Conditions are that user to be stationary and involve if he is at the party.
Music is done by performing FFT of audio samples and examining the spikes in frequency.



Road Bump Monitoring.

Figure 6 shows the results. We find that of the 9 bumps detected by the application, 6 match bumps in the ground truth set within 12m (Figures 6(a) and (b))





Conclusion
A need for such middleware
Support flexibility, easing development and their deployment.
Challenges can be addressed through infrastructural component and s\w sandbox.
Balances 3 inter connected goals.
Trading off a little privacy (i.e., allowing phones to be tracked within a registration interval), the push-based architecture of PRISM is able to achieve significant improvements in scalability 


Q & A
Thank you. 
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Figure 1: PRISM architecture


we do not require the applications themselves to be certified since
certifying application binaries is a hard problem and furthermore
expensive, especially in a community sensing context.1 Protecting
the mobile phones that host such untrusted applications is a key
task for the PRISM runtime.


We assume that the participating nodes are trusted, which means
that the OS running on these phones is trusted and that we can
count on standard OS mechanisms such as memory and file system
protections to work as intended.


Finally, we assume that each participating phone has wide-area
network connectivity (say over a wireless WAN), which allows it to
communicate directly with nodes in the infrastructure (see below).
In other words, there is no direct peer-to-peer communication be-
tween the phones.


3.2 Architecture
The PRISM architecture is shown in Figure 1 and consists of the


following three components:


• Application server (supplied by third parties): submits
jobs to PRISM servers, for deployment onto a desired set
of mobile phones


• PRISM server: accepts jobs from the application servers
and deploys them onto an appropriate set of mobile phones


• PRISM client and sandbox on mobile: registers with PRISM
servers and supports the execution of the jobs in a specially-
designed sandbox


Push-based Model: Applications can be deployed on mobile phones
in two ways: a pull-based approach [13] where all mobile clients
independently pull/download jobs from a server or a push-based
approach where a server pushes jobs to only a desired set of mo-
bile phones. Since PRISM is targeted towards city-scale sensing
applications, scalability and efficiency of operation is critical, ne-
cessitating our choice of a push-based framework for the PRISM
platform.


1Apple’s iPhone application certification simply ensures that the
developer can be identified; all liabilities arising from the applica-
tion are passed onto the developer.


A push-based model requires some amount of tracking of mobile
phones in order to able to “push” applications onto phones. Hav-
ing a common framework — PRISM — track phone resources on
behalf of all applications, has the following benefits:


• Fast Response: Tracking phone resources allows PRISM to
deploy applications immediately, as and when the desired set
of phones are available.


• Efficiency: Since phones are potential candidate hosts for
multiple applications, PRISM eliminates the need for each
application to track phone resources independently.


• Scalability: The amount of tracking can be modulated to
the load of application arrivals and the density of available
phones.


In order to support a push-based model, two key challenges must
be addressed by PRISM. First, a generic and flexible application
programmer interface (API), exposed by PRISM to applications,
needs to be designed so that applications can be effectively pushed
to a desired set of mobile phones. Second, an efficient mechanism
to continuously track a large number of mobile phones without im-
pacting energy usage on the mobile phones is essential. To address
the first challenge, we design a new API with two-level predicates
and a choice of two deployment modes. To address the second chal-
lenge, we design an adaptive and predictive registration and update
mechanism.


Next, we describe the registration mechanism that allows track-
ing of phone resources (Section 3.3), followed by the API that
enables applications to be pushed onto the tracked phones (Sec-
tion 3.4) and finally our optimizations for making the tracking pro-
cess efficient (Section 3.5).


3.3 Registration
The registration process enables a phone to inform PRISM server


of its presence and its availability to run PRISM applications. Reg-
istrations are maintained as soft-state and automatically expire after
the registration period. We set the registration period to one hour to
balance the overhead of the registration process with privacy risks
where tracking phones long enough could reveal the identify of the
user [23, 24].


The registration includes both static and dynamic resource infor-
mation. Static information comprises the hardware resources, such
as sensors and radios, on the phone available to PRISM. Dynamic
information comprises information that is time-varying, specifi-
cally the location of the phone and the battery energy remaining.
The dynamic information is kept updated at the PRISM server through
update messages.
Privacy: Note that tracking of phones can be accomplished with-
out significantly weakening privacy, though, PRISM does trade-off
some privacy for scalability compared to a pull-based approach like
AnonySense [13]. First, PRISM server’s ability to track mobile
phones is limited to a short registration interval. After the expiry
of registration period, phones wait for a random amount of time,
picked from an exponential distribution, before registering again.
Further, PRISM servers are prevented from tracking phones across
registration periods by employing an independent anonymization
service [16] (see Figure 1), thus avoiding any tracking through
client IP addresses. Finally, privacy can be further strengthened
by adopting cloaking techniques presented in [23, 24] such that
registrations from any given region are sent to PRISM servers only
when the number of registering phones exceeds a given threshold.
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Figure 2: Client Sandbox


would be suitable for the battery energy resource, where ex-
act tracking is not essential.


4. SOFTWARE SANDBOX
We now turn to the mobile phone end of PRISM. The key goal


here is to enable the safe execution of untrusted application binaries
on a mobile phone. Our basic approach is to run the untrusted appli-
cation inside a software sandbox. To realize the software sandbox,
we use the standard technique of system call interposition [6]. For
simplicity, all system calls pertaining to sensor device, file system,
and network operations are blocked rather than being modulated
inside of the OS kernel. In the place of the blocked system calls,
applications use a set of library APIs that interface with a user-
level PRISMd daemon, which mediates all accesses to the sensor
devices, file system, and network. Figure 2 shows the architecture
of the software sandbox.


While the software sandbox addresses basic security concerns,
there are a number of additional issues that arise from the sens-
ing context. These pertain to security and privacy concerns arising
from access to sensitive sensor data and the risk of resource de-
pletion, specifically with regard to battery energy. We focus our
discussion here on these novel aspects of the software sandbox.


4.1 Mitigating Privacy Risks
In general, any access to sensor data could pose a threat to user


privacy. For instance, access to the microphone would allow record-
ing of private conversations. Access to a seemingly less sensitive
sensor such as GPS could also compromise privacy by allowing
the (anonymous) user to be tracked and eventually identified [24].
Even access to a seemingly less sensitive sensor such as the WiFi
could compromise privacy because of manufacturing artifacts that
may allow the device to be fingerprinted.


We argue that such privacy risks are inherent to community sens-
ing applications. If we want to ensure perfect privacy, all access to
sensors would have to be blocked. Given this, our goal in PRISM
is to mitigate the risks while retaining useful sensing functionality.


One approach to mitigating the risk is “dumbing down” the sen-
sor data that is passed on to the application, say by quantizing it to
a coarse-grained level. However, since application needs cannot be
anticipated, it is hard to do such dumbing down without impacting
generality.


The mechanisms included in PRISM’s sandbox are aimed at mit-
igating privacy risks while still allowing useful sensing functional-
ity. As the first line of defence, sensor access control (Section 4.2.1)
gives the user broad control over which sensors, if any, applications
may access. When the user permits access to a sensor, PRISM mit-
igates the risks by constraining the computing and communication
that the application may perform, using the resource metering (Sec-
tion 4.3) and forced amnesia (Section 4.4) mechanisms. These con-
trols are designed to match the requirements of typical community
sensing applications, where sensor data is processed and signifi-
cantly reduced on the mobile node before being transmitted (e.g.,
noise mapping [7] or pollution monitoring [25]). Where significant
amounts of raw data is transmitted, it typically happens with human
involvement (e.g., taking a picture or recording an audio clip and
then uploading the raw data). Thus, we believe that the combina-
tion of tight controls by default and human-controlled overriding,
offers the flexibility needed for a range of community sensing ap-
plications.


4.2 Regulating Access to Sensors
In PRISM, we use two complementary approaches to regulate


access to sensors.


4.2.1 Sensor Access Control
The most direct way of addressing user concerns pertaining to


privacy is via sensor access control, i.e., blocking access to sensi-
tive sensors (e.g., the microphone). While the sensor access control
policies could, in general, be complex, we restrict ourselves here to
three simple yet natural policies:


1. No sensors: Direct access to all sensors is blocked. While
this severely restricts functionality, there are sensing appli-
cations that would fit this mould, since sensor information
could still be used indirectly as part of the predicate. For
example, an application could prompt users at a particular
location and have the human users do the sensing (e.g., re-
port back on the food at a restaurant). Note that, while the
untrusted application does not have direct access to the lo-
cation sensor, the PRISM runtime would still have access to
location information, thereby allowing the application to tar-
get phones in the desired location.


2. Location only: Only access to location information (e.g.,
from GPS) is allowed. This would, for instance, enable a
traffic flow monitoring application that requires knowledge
of location and derived quantities such as speed.


3. All sensors: Access to all sensors (including multimedia sen-
sors such as camera and microphone) is allowed, which pro-
vides the maximum flexibility.


An alternative to these coarse-grained access control policies
would be to prompt the user and seek authorization for each ap-
plication that wishes to access a sensor. While offering greater
control, this alternative runs the risk of overloading the user.


4.2.2 Sensor Taint Tracking
An alternative to sensor access control is to place severe resource


limits on PRISM applications that access sensitive sensors, instead
of blocking such accesses entirely. By diminishing an application’s
ability to process or transmit sensed data, we could significantly
diminish privacy risks while providing greater flexibility compared
to blocking access to sensors.


Sensor taint tracking is a mechanism to enable the above. Since
PRISMd mediates accesses made by a PRISM application to all
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Direct Via PRISMd Overhead


GPS 804.3 mW 821.2 mW 2.10%
Mic 312.6 mW 315.0 mW 0.76%


Table 3: Average power drawn with direct access to sensors
versus access that is mediated by PRISMd


in terms of context switching between the PRISM application pro-
cess and PRISMd, and data copies involved in UDP-based inter-
process communication between the two processes.


To quantify the overhead, we perform micro-benchmarks to com-
pare the energy consumed when an application accesses sensor data
via PRISMd versus when it accesses it through a direct system call.
We perform these measurements for two sensors: GPS and micro-
phone. In the case of GPS, the application alternates between look-
ing up the GPS lat/long information and sleeping for 1 second; each
location report is 20 bytes in size. In the case of the microphone,
the application alternates between obtaining a 1-second long 8-bit
PCM audio sample and sleeping for 1 second; each audio sample
is 22 KB in size.


We use a hardware energy meter connected to an HP iPAQ hw6965
phone, to accurately measure the average power drawn by the phone
during each experiment. The results are summarized in Table 3. We
find that the overhead of mediation by PRISMd is low. This lends
support to PRISM’s choice of encapsulating sensor access control
and tracking in a separate user-level daemon rather than the more
efficient but also more complex alternative of stuffing this function-
ality into the in-kernel system call interposition layer.


7. EVALUATION: APPLICATIONS BUILT
ON PRISM


We have prototyped three simple applications on the PRISM
platform. Our goal is to demonstrate the flexibility of the platform
rather than present novel applications. Our deployment thus far has
been on a very small scale, limited to the 15 phones in our testbed
and a handful of volunteers.


7.1 Citizen Journalist
This application is inspired by Micro-Blogs [22] and involves


participatory sensing, wherein PRISM provides location-based trig-
gers to alert human users, who are in the vicinity of a location of in-
terest, to respond to the application. Responses could take the form
of answering simple queries, taking pictures of interesting events,
etc.


Such an application could be used, for example, by small news
organizations to collect information for particular events of inter-
est. In this context, two types of application requirements exist: 1)
critical queries where fast response to application queries is neces-
sary (e.g., someone reports an accident and the news organization
requires a citizen to take a photograph of the scene); 2) queries that
are not latency sensitive but may need answers from areas that are
sparsely populated (e.g., someone writing an article about the con-
dition of school buildings in remote villages and requires a recent
photograph of the same).


The application requests PRISM to deliver the sensing task to a
certain number of camera-equipped phones in the vicinity of the
desired location. The location is specified by (lat, long) and in-
cludes a coarse radius for deployment and a fine radius for actual
execution. If matching phones are not readily available, PRISM’s
trigger mechanism is used to deploy at the location as and when
PRISM clients register/send updates from the desired location.


Figure 4 shows the pseudocode for the distributed aspects of
the application. The simplicity of the pseudocode is striking. In-


// set up the first level coarse-grained predicate
L1pred = new FirstLevelPredicate();
L1pred.location = <desired location>;
L1pred.radius = <desired coarse radius>;
L1pred.stationary = false;
L1pred.cameraPresent = true;
L1pred.numOfPhones = <desired number of phones>;


// set up the second level fine-grained predicate
L2pred = new SecondLevelPredicate();
L2pred.location = <desired location>;
L2pred.radius = <desired fine radius>;


// set up the application with the predicates
PRSIMapp = new PRISMApplication();
PRSIMapp.Init();
PRISMapp.SetPredicates(L1pred, L2pred);
PRISMapp.SetBinary(<path to ’phoneapp.exe’>);
PRISMapp.TriggerMode = true;
PRISMapp.DistributeToPhones();


// read and process data sent by phones
while (appData = PRISMapp.GetData()) {


<process the received data>;
}


Figure 4: Pseudocode for Citizen Journalist Application


deed, we believe that the PRISM infrastructure relieves the pro-
grammer of the details of distributing their application, thereby let-
ting them focus on the core application tasks — local processing on
the phones (e.g., image capture, GUI) and centralized processing
on the application server (e.g., collating all of the queries/pictures
received).


Coarse-grain Radius → 30m 75m 125m


Network → 2G 3G 2G 3G 2G 3G
User Speed ↓


Walking (4kmph) 5/5 5/5 5/5 5/5
Driving (30kmph) 5/5 5/5
Driving (40kmph) 5/5 2/5 5/5
Driving (50kmph) 3/5 5/5


Table 4: Micro-benchmark results: success rate of application
launch with 30m fine-grain radius against varying coarse radii,
user speed and network type. Number x/y indicates x success-
ful launches out of y trials. Cells colored black indicates no
success, gray indicates partial success and white indicates com-
plete success.


Micro-benchmark: Recall that when a PRISM phone with the
appropriate sensors is within the identified coarse-grain radius of
an application predicate, the application is deployed onto the phone
and only when the phone enters the fine-grain radius, the applica-
tion is launched for execution. We first conduct experiments to
quantify the impact of the choice of coarse-grain radius on suc-
cessful deployment and launch of PRISM applications for different
user mobility speeds and network types (2G vs 3G). We use the
citizen journalist application (the size of the executable was about
35KB) for these experiments and set the fine-grain radius to 30m
around a chosen center of interest.


Table 4 summarizes the results of our experiments. From the re-
sults, we make the following observations. First, at walking speeds,
the application was successfully launched within the fine-grain ra-
dius for all choices of coarse-grain radius (30m, 75m, and 125m)
and networks (2G, 3G). However, we would like the launch to oc-
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Item Count


Deployed 417
Launched 274
Total Responses 235
Response Time in seconds (avg., max) 46, 149
Photo Responses 141
Total Cancelled 38
Cancelled (TooFarAway) 9
Normalized Deployed Distance (avg., max ) 71%, 443%
Normalized Launched Distance (avg., max ) 83%, 100%


Table 5: Statistics from the pilot deployment


cur when the user is approaching, rather than receding from the
point of interest, to notify the user of a sensing opportunity suffi-
ciently in advance. For 2G networks with 30m coarse-grain radius,
we found that most of the application launches occurred beyond
the center point of interest. This indicates that for pedestrian users
on 2G cellular networks, a larger coarse-grain radius (e.g., 75m) is
required. Second, as expected, for a given coarse-grain radius and
user speed, the success rate in 3G networks is higher than in 2G
networks. This is because the lower latency and higher bandwidth
of 3G networks allow for a faster deployment of the application
than on 2G networks. Third, as the user speed increases, a larger
coarse-grain radius becomes necessary for achieving successful ap-
plication launches. These experiments validate the benefits of two-
level predicates for successful application launches while catering
to a range of user speeds and network types.
Small-scale pilot deployment: The citizen journalist application
was deployed on a small-scale using ten volunteers, including three
authors of the paper. The volunteers were given windows mo-
bile phones with GPRS (2G) data subscription and they carried the
phones whenever they left work (e.g., to go home or for walks).


A total of 30 locations of interest was identified in an area of
few square kilometer in the vicinity of the Microsoft Research In-
dia lab in Bangalore. Custom tasks seeking responses from users
at these locations, were generated periodically by the application
server and sent to the PRISM server for deployment. For example,
a task would ask the user how heavy the traffic is at an intersec-
tion and also ask them to optionally take a picture. Given that the
speed limit in the area of interest was 30kmph and many volunteers
used the system at walking speeds, a fine-grain radius of 30m and
a coarse-grain radius of 75m were chosen for vast majority of the
tasks. These choices ensure a high application launch success rate
with ample notification time based on the micro-benchmark results
reported earlier.


When the application launches based on the coarse-grained and
fine-grained predicates, the user is notified of the launch by gener-
ating a ringtone on the phone. If the user chooses to ignore it, then
the application will get cancelled automatically based on a time-
out period. Otherwise, the user has the option of responding and
performing the requested task, or manually cancelling the applica-
tion. In the latter case, the user can optionally provide a reason for
cancellation (e.g., too busy or location too far away).
Key takeaways from the pilot: Table 5 presents several statis-
tics from the pilot. A total of over 400 application instances were
deployed out of which 274 were launched and 235 responses, ma-
jority of which included a photo attachment, were received dur-
ing the trial. The average response time for applications where
phones matching the top-level predicate were immediately avail-
able was 46 seconds (including 10 seconds of deployment delay
over GPRS), demonstrating the value of a push-based framework
such as PRISM.
1. Value of two-level predicates: As mentioned earlier, for most
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Figure 5: Responses to applications indexed by locations


regions of interest, we set the fine-grain radius to 30m and coarse-
grain radius to 75m. For a few regions of interest that spanned a
large area, the fine-grain radius was set to 50m and the coarse-grain
radius to 100m.


Table 5 shows the average and maximum value of the normalized
distance at which the applications were deployed and launched (rel-
ative to the specified radii). The average normalized deployed dis-
tance is only 71% of the coarse radius. This is due to the lack of pre-
cise GPS information at the server and the time taken to download
the application through GPRS. Thus, the application is deployed
well inside the coarse radius. Instead of using two-level predicates,
if we had restricted ourselves to a single-level predicate that specif-
ically targets the small precise region of interest, the deployments
would often have been too late to be of value, as discussed in the
micro-benchmark results.


The maximum normalized deployment distance is over 4 times
the coarse-grain radius. The reason for this discrepancy is because
of the lag between the location that has been registered at the server
and the precise current location of the mobile phone. However,
since the applications are launched only after the fine-grain pred-
icate check, these deployments do not impose any cognitive load
on the user. In contrast to the deployment, the launch distance
is more tightly controlled, the average and maximum normalized
launch distance being 83% and 100% of the specified fine radius.
This again demonstrates the value of the two-level predicates be-
cause the actual launch is initiated locally on the phone with full
and precise knowledge of the location by the PRISM client.
2. Need for tight integration with maps: Out of the 38 instances
of application launches that were cancelled, users had indicated that
9 of the requests were too far away and thus, these launches could
be interpret as spam. However, from the launch distance statistic
in Table 5, we see that the application never launched outside the
fine-grained predicate. Upon further investigation, users revealed
that they were either on an adjacent street behind the point of inter-
est or they were moving away from the point of interest when the
application launched. This clearly indicates that tight integration
with maps (streets, direction of traffic, etc.) and heading informa-
tion would help reduce such unintended spam possibilities.
3. Trigger mode Figure 5 depicts the total user responses to ap-
plications indexed by locations over the duration of the pilot which
lasted approximately one week. From the graph, it is clear that
jobs posted to a few locations received a large number of responses
(popular locations visited by many volunteers) while a few loca-
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